MOMENTLESS ELASTIC REINFORCED SHELLS
WITH A ZERO GAUSSIAN CURVATURE

Yu. V. Nemirovskii and G. I, Starostin UDC 539,311

In [1], a number of statements were formulated of the problem of the attainment of a

momentless stressed state in elastic reinforced shells with an arbitrary form of their
middle surface. The present work is devoted to the solution of three of the statements
advanced in {1], for the case where the middle surface has a zero Gaussian curvature.

§1, We take the calculating model of a reinforced shell advanced in [1]. We refer the middle surface
of the shell to the curvilinear orthogonal coordinates « and B, coinciding with the lines of curvature; here,
we denote by A and B the coefficients of the first quadratic form of the surface, and by R, and R, the prin-

cipal radii of curvature.
Let the middle surface have a zero Gaussian curvature R;=«). If the shell works under a moment~
less stressed state, the following must be satisfied:

The equations of equilibrium

(BT1).o— BTy +Tsg = —Bpy; Ty (BTs)u+ Bl =— Bps, Ty=Rpy; (1.1)
the relationships of elasticity
T = 2hfapme, &€= 052" |byn T; (1.2)
T=[T\T.T, e=leatsls [brm] =larnl "
the geometric equations
1= Uy, ty=B g+ B7'B,u+wR™, gg=B up+ BB, (1.3)
1=t =0, %y=—B" (Buwy—vR™) j— BB yu, o= 0;
T=—B""(wap— BB wg) + BR™ (vB ™), = 0;
the equetions of continuity of the strains
(Beg)w —e1,8 =0, [{Be,)e — Boeilq = 0. (1.4)

Here R=Ry Ty, T,, T;are the normal and shear stresses; ¢, €,, £; are the relative elongations
along the o~ and B-lines and the shear; .y, n,, T are the changes in the curvature and the torsion; u, v, w
are the components of the displacements along the o~ and $-lines and the bending of the middle surface;
Py, P2, P3 are the components of the external surface load; 2h is the thickness of the shell; the length of an
arc of the a~line is taken as the parameter o, from which it follows that A=1. Here and in what follows,
the index after the comma denotes the partial derivative with respect to the corresponding coordinate.

The coefficients ay,, &k, m=1, 2, 3) have the form {1, 2]
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where n is the number of families of filaments (n=1, 2,..., N); wy is the relative volumetric content of
the filaments of this family; Ey is their Young's modulus; ¥, is the angle between the direction of the fila-
ments of the family and the a~line; E, ¥ are the Young modulus and the Poisson coefficient of the material
of the binder; a is the relative volumetric content of the binder.

If €,, &, &4 satisfy the equations of continuity of the strains (1.4), Egs. (1.3) serve to determine the
components of the displacement u, v, w. We shall postulate that the boundary conditions for the shell are
so formulated that there exists a solution of Egs. (1.3) with respect to u, v, w satisfying these conditions.
Therefore, in what follows, Egs. (1.3) and the boundary conditions for u, v, w are left out of the discussion.

We shall formulate and discuss further three statements of the problem of attaining a momentless
stressed state in reinforced shells of zero curvature.

§2, For a shell of zero curvature, let there be given the following: the form of the middle surface,
the laws of change in the thickness and the character of the anisotropy, and the momentless boundary condi-
tions. It is required to find the dependences between the components of the external surface load which
bring about a momentless stressed state in such a shell.

We shall limit ourselves to the case of cylindrical shells, with an arbitrary form of their directrices.
Then, taking as the parameter § the length of an arc s of the directrices, we obtain B=1, R=R(s), and, con-
sequently, from the second equation of (1.4) we find

€y =0Q1(5)+Pals), 2.1)
where @4(s), ¢,(s) are arbitrary functions of the integration,
From relationships (1.1), (2.1) we obtain
Ty = (2hey — by Rps — byyls) bis'. (2.2)
The first two equations of (1.1) and the first equation of (1.4), using the dependences (1.2) and the
third equation from (1.1}, arebrought to the form
culg ot Tyt cisTs=cy, Ty0=0y; (2.3)
where e T g0t 35 g o CasTa= 0,
C=— b23b1—211 C13 = Cit,r C31 = O‘Sh—i (baa - b13011)1
Cq9g = — 0.5~ (byg -+ b31a)s  Co3 = Ca1,0 T+ C32,00
£y =—p;+ (bzzbaiRps).a —2 (hbﬁiez).m €y = — Pa — (RPg).s»
Gy = (bnbaiﬁz + C4P3).s - (blsba182 + csps),m
ey = 050 R (byy — b1iboobis'), €5 = 0587 R (byy — byybasbin').

The conditions of the integrability [3] of Egs. (2.3) have the form
A1T3=A2§ BlT3:B2: (2-4)
where A, = — ¢c13,05 By = g3 — €155}

Ay = Pyo T ¥11P2 T ViaP2a — P2,s + V13Ps T V1aDs.0 + Vi5P3.s + ViePsaa & V12P3,s5 - V18Ps,as + Vii
By =%5P1 + V22 P + V23P3_+ YaaPar -+ VosPars +— Vai

Vi = —Ci3— Cit,ey Vio = — a1y Vg = — Res R(bzzbﬁi),a = V1w
Yu=—cul s —2R (bzzbal>,m Y15 = — 2R+ yuR,
Y16 = — szzbﬁl7 Yir=—HR, yu=—cyR, v1=2 (kbglgz),am

) .
Yoi = Cg3s Va2 = €31 — C11Cam  YVag = Yaoll,s — €30 R (bzzbiz ]47 == Chs — Cha

—1 .
Yaa = — C5lbysbin’ — €5 Vo3 = VapR - €y,

Yo = 2639 (ho13'e,) ., — (blxbﬁlsz\),'z -+ (bnbais-z)m
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If the cylinder works ‘1 2 momentless state, then system (2.3) must admit of a solution for T, and,
consequently, the equalities (2.4) must be satisfied. Here three cases are possible. If
A,=B,==0, (2.5)

then from (2.4) we obtain
Ay=B,=0, (2.6)

In this case, the function T3 can be determined from any of the equations of (2.3), for example, from the
second,
If A;=0, B;# 0, then from equality (2.4) we find
A,=0; 2.7}
T,= B,Bi". {2.8)
It can be verified that, in order that the expression found for T, actually be a solution of Egs. (2.3), we re-

quire the satisfaction of a relationship, obtained with the substitution of the expression for Ty from (2.8)
into the second equation of (2.3),

(BzBi_i)!a —cy=0. (2.9)
If A;#0, B;#0,0rB; =0, then from the first equality of (2.4) we find
Ty = A, 47" {2.10)
In order for the expression found for T; to be a solution of Egs. (2.3), we require the solution of relation-
ships, obtained with the substitution of the value for T, from (2.10) into the first two of Eqs. (2.3) and into
the second equality of (2.4),
(AZATI).S + "13‘42‘4-1-1"‘ ¢ ey, =0; (AzAi_'iL% —ey= 0, .11)
BiA AT — B, = 0.
Thus, depending on the starting data of the statement under consideration, the components of the ex~

ternal surface load, bringing about a momentless state in the cylinder, must satisfy the relationships (2.6)
or (2.7), (2.9) or (2.11).

We shall illustrate the results obtained using the following example: We consider a closed cylindri-
cal shell with a directrix of length L (we take the origin for the coordinate o at one of the bounding ends).
The shell is made of an isotropic material @ =1, Gp =wuaEn@E)" =0, n=1,.. ., N) and has a constant thick-
ness (h=const). The component p; of the external surface load satisfies the equality ps=p=const { > 0),
At the edges cf the shell, the following conditions are given:

a0 =Thlur =0, Tylumo =— Tglomr. 2.12)

It is required to find the laws of change of the components P and p, of the external load with which a moment-
less state will be realized in the cylinder under consideration.

Since, with the conditions formulated, equalities (2.5) are satisfied, the sought components p, and p,
must satisfy relationships (2.6), which, in the present case, have the form

Piz — Pos— R,sp = 0; E (1 +v) py + 25,50 + Y2 = 0. (2.13)

Using dependences (1.2}, (2.1), the first equation of (1.1}, and the boundary conditions (2.12), from
(2.13), (2.2), and the second equation of (2.3), we find

P1=0.5v(1+v)"Ya—0.5L)R, s, p, py=—0.52+v)(1+v)" R,p; (2.14)
T1=O, T3=05V(1 +V)_1(O,5L—OL)H,5 P (2 15)

By virtue of the third equality of (1.1) and (2.15), the condition for elastic work of the material of the
shell [1} can be represented in the form
0.55"p (R® + [0.5v (1 4+ v " (0.5L — o) B ]} * < o, (2.16)

This inequality leads to a limitation on the value of the load p. Let us apply the solutions obtained to an
actual partial case, i.e., to a cylinder of elliptical transverse cross section. Then [4] R=0av*(1—¢ caslq)—1/?,
ds =Rde,

925



dR 3e sin 2¢ d*R 3g (cos 2q — g cos? @)

O T T T2 —eco’q) ' T o Yl—ccong (2.17)
dRi_ 6e [, 3 1 1 2 1
W—W[l"TS_TG(i_TE)COS (p]SlIl?,(p,

where £=1—v% y=a, '; a, and a, are the large and small semiaxes of the ellipse; ¢ is the angle formed
by a normal to the ellipse and its small axis.

We introduce the dimensionless quantities q;=p{p_ 1, q,=p;p~ ', x=aL"!, I=1a,”},
zo = {(Rar")* + 3 [0.5v1 (1 4+ v) 71 (0.5~ 2) R ]y, (2.18)

Dependences of q, (solid lines) and g, (dashed lines) on x, calculated using formulas (2.14), (2.17),
are shown in Fig, la (with I=2) and Fig. 1b (with I=4). The numbers 1-9 correspond to the values ¢ =0,
%/8, ®/4, 3/8%, ®/2, 5/8%, 3/47,7/87, ¥, the numbers without circles correspond to the case ¥ =1/2, and the num-
bers enclosed in circles to the case y=1/3. For determinacy in the calculations it was assumed thatv =0.3.

In accordance with condition (2.16), the shell will work elastically only if the inequality Zh%(aip)'1 >z
is satisfied. The maximal values of z; along the cross sections ¢ =const, calculated using formula (2.18)
for the values of I, v, @, under consideration are given in Table 1. We note that, in any given cross section
x =const, each of the quantities z, q, has identical values for points of the middle surface which are sym-
metrical with respect to the ellipse of the cross section, and q, for points which are symmetrical with re~
spect to the center of the ellipse. With y=1 (round cylinder), from (2.14), (2.15), we obtain p;=p,=T;3=0.

§3. Let us consider two further statements of the problem of attaining a momentless state; the meth-
ods of solution are very similar,

First Statement. Let there be given the following: the form of the middle surface, the law of the
distribution of the external surface load, the rigidities G =wkEk* @E)~! (previously reinforced, k=2,...,
N}, the angles ¢, 0=1,..., N), and the momentless boundary conditions, It is required to find the laws
of change in the thickness h and the rigidity Gy (additionally reinforced) with which a momentless state will
be realized in such a shell.

Second Statement, Given: the form of the middle surface, the law of the distribution of the external
surface load, the thickness, the rigidities Gy (previously reinforced, k=3,...N), the angles yp(n =1,,..,N),

t | v Jo=0| as | an \asal an
1/2 | 2,0 11,240 (0,621 | 0,347 | 0,250
2 1/3 | 3,0 | 1,220 0,550 | 0,256 | 0,111
1/2 1 2,0 11,457 10,880 0,465 | 0,250
4 1/3 1 3,0 11,821 {0,996 | 0,454 | 0,111
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and the momentless boundary conditions. It is required to determine the laws of change in the rigidities
Gy and G, of two supplementary families of filaments with which the stressed state in the shell under con-
sideration will be momentless,

Under the conditions of both statements, the stresses Ty, T,, T; are found from Egs. (1.1}, with an
accuracy up to arbitrary constants determined from the boundary conditions [5].

For solution of the first statement, we represent the relationships of the elasticity (1.2), using de-
pendences (1.5}, in the form

a'“el -+ Glell%i -7, (ZhaE)“1 = — aigsz — aigsg; (3.1)
a;281 + Glell%1 — 7T, (2haE)wi = — aégsz —_ aégea;
a;gel + Gye il — TS(ZkaE)"‘i = — aégs.z — aégsg,
where
ey = e,lt - &,5 4 &sluless (3.2)

, N , N
@i = (1— v~ & 2 Gl ap=v(1 =) 4 3 Guliuth,
=2 he=2
, N R , N
ai3 = kgz Ghlihljk’ agg = 0,5 (1 + ’\,’)—1 + kgz lefhl%hy l; ] == 1, 2, i 7é jc

Assuming A # 0, from (3.1) we find

2k = AAT, Gy = A, (Ae))™ (3.3)
ey =—ky eg ke (3.4)

where
Ay = (— 1) (ai24; + anB;i + a35C;) &5 + (— 1) (aisd; + anB; + asC;) e, (3.5)

A=— (AT, + BT, + ClTs)? ky = A~ (11’12143 + [lézBS + 1112303)7
y = A7 (0134, + B,y + a3C,);
Ay = (ai2l11 - allslﬂl) Iy, 4= 4'137‘2 - aliszv Ag = (Tolyy — Tyly) Loy
By = (a’wlu - a;ilm) Ly By= “’iiTs - “’13T1’ By = (T3ly; — T1ly) by
' Cy=auldi— aplly, C,=ajT,—auT,, Cy = Tsi5 — Tl
For solution of the second statement, we write the relationships (1.2), using dependences (1.5), in
the form
ayiey + Greylis 4 Goeglis = T, (2haE) ™! — alpe, — a13es; (3.6}
@191 + Giel3r + Goeylly = T, (2haB) ™ — apse, — avgey;
411381 + Greslanlyy + Gaeoliglyy = Ty (2haE)_1 - a;3€2 - ‘1;333,
where
ev=eili+eilh+ ey (1,7 =1,2% ij); (3.7)
g = (1 — V)t k‘i Gltn, @i =v (1 —v¥) " 4 é Golieldn,
v N N
a3 = ,;’:S; Golilyn,  aza =0.5(1 4+ vyt 4+ kgé Gilinls.

Assuming A # 0, from (3.5) we find

Gy =4;A71, Gy=A,A—Y (3.8)
P (3.9)
where
! " - " \ i 4 ” ”
Ai= (2haE)" (AT} + BTy + CiTy) — (a124; + agnBi + a5Ci) ey — (ai3A: -+ a33B; + a5sC;) 5, (3.10)

3
»
s T?nlmf

me==1

3
A= Agsin(P,— ), Ay = 21 Almlm;  F = (2haBA )"
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3 3
by = A:1 2 Cmalmy fog = — A:l 2 Azl
m=1 m==1
b= lalsey Ly=1lnl ly=—sin (Y, -+ P);
4= (013122 - aizllz) Loy By= (ai'ilzz - aislm) lig; Cy= 61121%2 — ahlgﬁ

" " " ”
_ . . v o9 -
Ay = (a12Z11 — a13121) Ly By= (a13l11 - 411121) L Cy=auls — apliy.

Further, using the dependence (3.9) as a uniform expression for £, we represent Eqs. (1.4) in the

form .
Beaga ke kzeafﬁ -+ (BmOG - kZ.ﬁ) By = (F - kl%),ﬁ?
[Beo,o + (1 -+ k1) Boagy — BB o8y — BoFl 5 = 0,
Thus, the solution of both statements reduces to the solution of Egs. (3.11), (3.12). If
k2:0, '
then, integrating Egs. (3.11), (3.12), we find

g = %[% (® + j% (F — hyey) da];

€y = %3_1 {(h (ﬁ) _;.5‘ [% F -+ ¢y (ﬁ)]elda} , I = —%%dﬂ.,

where ¢1(8), ¥,(8), ¥4(8) are arbitrary functions of the integration.
If B,,=0, then from Eq. (3.12) we find
g, =0 4() +s(B),

where ¢4(8), ¥;(B)are functions of the integration.

(3.11)
(3.12)

(8.13)

(3.14)

(3.15)

(3.16)

In the present case, as the coordinate g we take the lengths of an arc of the 5-line. Then, B=1, and

Eq. (3.11) can be represented in the form
€g,0—KaBg,s=Ka,s8— ] s
where f=F—k,g,, €, is determined by the dependence (3.16).
Let us examine the possible variants of the Canchy problem for Eg. (3,17), and their solution:
1) ky=ky(@), f=f(), s3la=ao=s (s) (here and below € is a given function of one variable),

/

[e]
Solution &;=¢ (s + \ kgdoc);

127

N

2) kzsz(S)’ f=f{), s‘sls :Sﬂzs @).

g s
Solution &, = ]‘Z (ff; e(oc—}- | %);
2\ 2

\ So

3) ky =k, (oc); 0f18s =E(a), eglamu, = &{S).

/7 a,. N ‘z,
Solution & =& (s + kzda) — 5 Eda:
o2 g o
4) k,=const, £=£(s), &3ly=q,7 ().
Solution e; = kit F ()Y —fIs+ (@—a) k1) + es 4 (a— ag) k,l;
5) k2 = k2 (S), f =f (3)7 83'5235 = € (a)

Solution e, = k37! (s) { ko (s e [a + jk;’ (s) ds} () —1 (so)}.
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If
Fe=k,B,, A0, (3.18)

then from (3.11}, (3.12) we obtain

8 = @189 o + Oo€y + O35 D1E2,00 + baoap -+ bgﬁ'?,‘cz -+ bagz,p + bsey= be, (3.19)
where b; = a,B, b,= —k,a,, by= Ba,+ (a,B),a — (alkz)g,pv by =k — asky, by = (a;B) o — (k) p -+ ki3, bo={F +
kog).p — (a3B),u; =Bk, ay = (1 +E)k™", ag=— (BoF + 0e)k"; ¢oB) is an arbitrary function of the inte-
gration.

Equation (3.19) is solvable for both statements in the case where the inequality (3.18) holds,

In 2all cases, after the functions &£, and &4 have been found, using dependences (3.4) or (3.9) we find
the function €,. Further, for the first statement, we determine the sought functions h and G, using formu-
las (3.3), and, for the second statement, the sought functions G, and G, using formulas (3.8).

As an illustration of the results obtained for the first statement, let us consider an example, A
closed cylindrical shell of elliptical transverse cross section (semiaxes @ and a,, 24 >a,) and a length L
is loaded by a uniform normal pressure P, =p2=0, P3=p =const, p > 0). A characteristic layer of the shell
contains only one family of filaments with a rigidity G, and an angle of reinforcement #. At the end of the
cylinder =0, a=L, the following conditions are given:

Tlamo = Tyfamr = T'{ = const, Tojumo = — Tgla=z, &gla—o = Eolomr. (3.20)
and, at the center, the conditions
hlawrp = g = const, G|gmrs = 0. (3.21)
It is required to select the thickness h and the rigidity G, in such a way that the cylinder will work in a
momentless manner. '
Let the angle of reinfoercement satisfy the equality
etg?y =TI, 77" (3.22)

(here it is obvious that only cylinders and loads can be considered for which T;= 0). Since, in accordance
with the condition of the example, there is no preliminary reinforcement (Gk=0,k=2,..., N), from re-
lationships (3.2), (3.5), with the condition (3.22), there follows the equality (3.13).

Then, taking as the parameter 8 the length of an arc s of the directrix, and using the boundary con~
ditions (3,20) and the conditions (3.21), from (3.3)- (3.5}, (1.2), (3.14), (3.15), (1.1) we cbtain

2h=2(1+v) A {@E [2(1 4 v) e, sinpeos P + (veos?p — sin? ) eg]} % {3.23)
G, =12(1 + vy -+ (vTy — T, eg] {Aey)) ™ (3.4}
79 — 41?9 Ik 3
8y = ~— K&y, ez:%W_Ei, gy = — jﬁ(klsz)da; 0. 25)
L/2
Fy = (v—ctg® ) (1 — votg? p)

d*R s : L dR
T1="%‘(°""‘L)d—szp+ Ty, T,=Rp, TS:(T“OC)TEP’

where T{=T; | =1,/; 4=1, 2).
We introduce the dimensionless quantities
H=nhi'; z=al™ I=Larh t="T] (ap)™" (3.26)
39 = 2ot B [ayp (1 — V)™ [(e1 + VEo)? + (5 + ve))® — (8, + vey) (8g + vey) 4 0.75(1 - VY %52z, = 2heaEe, (a,p)

We assume that a character layer is reinforced in accordance with the following scheme (Fig. 2):

& LT P i)
o N v
é 4/\ \75“5
. 4 02
o~ S
S < - 4]
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Fig. 3 Fig. 4
TABLE 2
v ® x=0 0.1 0,2 0.3 0.4 0,49
/8 0266 | 0,264 | 0263 | 0,263 | 0,262 | 0,262
0,8 /4 0,235 0,236 0,239 0,233 | 0,236 {0,236
, 3/8x | 0,212 | 0214 | 0215 | 0,216 | 0.216 | 0.217
/8 0,271 0,269 0,268 0,267 1 0,266 | 0,268
0,7 /4 0222 | 0,223 | 0,224 | 0,22 | 0.225 | 0,225
3/8n | 0189 | 0,492 | 0,494 | 0196 | 0.197 | 0,198
/8 0,265 | 0261 | 0,257 | 0,254 | 0,253 | 0,253
4 0.8 /4 0,235 0,237 0,238 0,239 | 0,240 | 0,240
3/8x 0,212 0,219 0,224 0,229 | 0,232 | 0,233
/8 0,271 0,264 0,259 0,256 | 0,254 | 0,253
0,7 n/h 0,222 | 0227 | 0,231 | 0,237 | 0,236 | 0.236
3/8n 0,189 0,202 0,213 0,223 | 0,229 | 0,231

a) in the sections 0= ¢= x/2 and 7<¢ = 3/2x with 0=x =1/29y=—Q,and 1/2 <x <1p=Q;
b) in the sections */2<¢ =7 and 3/27 < ¢<27 with 0=x=1/2¢0=Q, with 1/2<x=¢ ==,
where © =arccot vT,T, .

The dependence of H on x, calculated using formulas (3.23), (2.17), is shown in Fig. 3a (with I=2) and
Fig. 3b (with I=4). The solid and dashed curves correspond to the cases y=0.8; 0.7. The numbers 1-5

correspond to the cross sections ¢=0, x/8, /4, 3/8x%, /2 (Fig. 2). For determinacy in the calculation,
it was assumed that v=0.3, t=15.

The dependence of G, on x, calculated using formulas (3.24), (2.17), is shown in Fig. 4a (with I=2)
and in Fig. 4b (with [=4). Here the notation is the same as for Fig, 3. We note that, with ¢ =0, x/2, from
(3.25), (2.17) we obtain G = 0 with any given values of I, vy, x.

With v =1 (round cylinder), from (3.23), (3.24) it follows that H=1, G;=0,

Table 2 gives values of the angle 2 as a function of x.

According to [1], the binder and the filaments will work elastically if the following inequalities hold:
2 << 2hya, (a,p) Y 2haEor (Eya,p~Y) <z, < 2hyaEci (B,a;p) "

Maximal values of z; and z, along the cross sections ¢ =const, calculated using formulas (3.26), are
given in Table 3. The numerator gives values for z; and the denominator, for z,.

It must be noted that, in a given cross section x=const, each of the quantities H, Gy, z,, z; has iden-
tical values at points of the middle surface which are symmetrical with respect to the axes of the ellipse
of such a cross section. In addition, along the cross sections ¢ =const, the equalities hold H(x) =H(1—x);
Gi®)=G{(1=x), 2yx)=24(1™x); Z, (X) =21 (1—X).

As an illustration of the results obtained for the second statement, let us consider an example. A
closed cylindrical shell of elliptical transverse cross section (semiaxes @y, @; 41> @j)has a constant thick-
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TABLE 3 TABLE 4

1
tlvlo=o | s | as | s8] wo oy Jemo [ ms | an [ ama n
15,01 | 14,43 | 14,01 . : 36,371 36.31 1 36.231 36,231 36.23
o (V8153 382 13,58 | 13,31 | 1389 0.8 1 90971 95 ’ N
15,25 | 14,25 | 1346 | . . 110,75 35,41 | 36,33 | 36,23 | 36,247 36,24
0.7 1587 | 3.3 13,03 [ 1zer| 20 - T
7| 1670 | 13,67 | 0,8 | 36,82 | 36,59 | 36,28 | 36,23 | 36,23
L 8180 | 508 T3 08 1,35 | 150 20,75/ 37.0 | 36,66 | 36,24 | 36,24 | 36,23
21,05 | 22.16 | 16,99
0 00| 22104 16,99} g 59
0,7 20,46 {5,601 12,04 9,12 ®
TABLE 5
R ag | s | smm |

— 0481 | —0482 | —0,492 | —0,499 | —0,501
08 | ZG581 | =0,498 | —0,512 | —0,511 | —0,504
075 | —0.479 | —0,481 | —0494 | —0,502 | —0.504

’ 0479 | —0,503 § —0,522 { —0,519 | —0,504

08 | —0,502 | —0,486 { —0491 | —0,492 | —0,493
T0,502 | —0,614 | —0,666 | —0,612 | —0,493
—0,506 | —0,486 | —0,401 | —0,492 | —0,492
0,75 | 0,506 | —0,659 | —0,737 | —0,666 | —0,492

G2 Gy

£,,¢, 40

30

12

ness (h=const) and is loaded by a uniform normal pressure (p,=p,=0, py=p=const, p > 0). A character-

istic reinforced layer contains two families of filaments with the rigidities G, and G, and angles of rein-
forcement ¥, and ¥,; here

Py = —1P,=Pp=const. (3.27)

At the edges of the shell @ =0, @=L (L is the length of the cylinder), the following condition with a=1/2
is imposed:

G,=G,=G=const. (3.28)

It is required to select the rigidities G, and G, in such a way that a momentless stressed state will be at-
tained in the cylinder under consideration.

Since, in accordance with the condition of the given example, there is no preliminary reinforcement
G =0,k=3,..., N), from (3.7), (3.10), with the condition (3.27), there follows the equality (3.13). Then,
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as the parameter g, taking the length of an arc of the directrix s, and using the boundary conditions (3.20)
and the conditions (3.27), (3.28) from (3.8)~{3.10), (1.2), (8.14), (3.15), we obtain

Gy =(Dy+Dy)(Agey sin 29)—1, Gy=(D;—Dy)(Ay e, sin 29)—Y (3.29)
Oy ={(2haE)~1(vT,—T,)+&,1sin ¢ cos P,
Dy = [T3(2haE)1—0,5(1 +v)1e51Ay; Ag=v cos® P—sin? ;
e;==2, cos® P---g, sin® P-+g, sin P cos P,
ey = €, 0087 + &, 5in P — g 5in P cos 1P,
&y =F —ke,, & =(aiT2— ahT}) (2haB) " [adiady — («%)? ™,

o
a . {— 2 '
gy = — S = (F —kig)day F = m,g_*(h cos?p — Ty sin? vp),
L2 i
ky = (cos®p— vsin? ) A:—17 T? = Tiltl=L/2 (i=1,2)
a‘ﬁ =(1— vz)—1 —+ 2G cos® 1, ady = (1 -~ vz)—1 -+ 2@ sin® v,

ady = (1- v‘~’)—i + 2G sin® P cos? .
The stresses Ty, T,, T3 are determined by formulas (3.25).

We introduce the dimensionless quantities

l= Lai_’; = T; (alp)—i; z=al" (3.30)
2o = 2haE (1 — V%) alp]_i [(sl 4+ veo)® - ey o+ vey)® — (81 vey) (€5 4 vey) - 0.75 (1 - ’V)—zﬁg] v,
z, = 2haEe, (a,p) ", 2, = 2haBe, (a,p) " (3.31)

The dependences of G, (solid lines) and G, (dashed lines) on x, calculated using the formulas (3.29),
(2.17), are shown in Fig. 5a (with I=1) and in Fig. 5b (with I=2). The dashed-dot curves correspond to
the case G;=G,. The letters A, B, C, D, E denote the cross sections ¢=0, /8, x/4, 3/8%, ¥/2. The sub-
scripts 1, 2 correspond to the values v=0.8, 0.75. For determinacy, it was assumed in the calculation
that ¥=0.3, G=10, $=80°, t=40.

In the case where the cylinder is round (y=1), from (3.29) we obtain G;=G,=G=10.

According to [1], for elastic work of the elements of a composite material, the inequalities must be
satisfied
29<C 2hao, (a;p)~;

2haBor ! (Bia,p) "' << 2, <2haBo{ (Bja,p)~ "
2haBoy (Bya,p) ' <z, < 2haEo7 (E,a;p) "

In the numerical example under consideration, formulas (3.21) give z;<0, z,<0, i.e., the reinforcing
filaments in the composition of a composite material work in a compressed state (e,<0, e,<0). Table 4
gives maximal values of zy, and Table 5 maximal values of z, (in the numerator) and z, (in the denominator)
in corresponding cross sections ¢ =const, calculated using formulas (3.30), (3.31), (2.17).

It must be noted that, in any given cross section x =const, each of the functions G, G,, 2z, z;, 2, has
jdentical values at points of the middle surface which are symmetrical with respect to the axis of the el-
lipse of the cross section. In addition, along cross sections ¢ =const, the equalities hold G (x} =G,(1—x});
2¢(X) =2 (1=X); 2((X) =2Z,(1~x).
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